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1 Introduction

We construct moduli spaces to capture how structures vary within families. The global
topological and geometric properties of these spaces reflect the properties of the objects they
parametrize. Understanding moduli spaces provides insights into these objects. In this topic
proposal we present two examples of moduli spaces that illustrate this philosophy.

An important example is the moduli space of Riemann surfacesMg, which parametrizes
complex structures on a topological genus g surface Sg up to biholomorphisms. Equivalently,
this classifies hyperbolic structures on Sg up to isometries. Examining the geometry of the
moduli spaces tells us about the behavior of hyperbolic structures on surfaces under defor-
mation. Just as one studies an orbifold by lifting to its universal cover we can studyMg by
considering the Teichmüller space Teich(Sg), which consists of marked hyperbolic structures
on S up to isotopy. The mapping class group Mod(Sg) plays a key role here, acting properly
discontinuously on Teich(Sg) by change of marking. The quotient Teich(Sg)/Mod(Sg) is
precisely the moduli spaceMg.

Section 2 covers the basic theory of mapping class groups of surfaces, including first
examples, generators and relations, and some important subgroups. In Section 3, we will
discuss the topology and geometry of Teichmüller spaces and its relation to the moduli spaces
of Riemann surfaces.

In Section 4, we will switch our attention to another type of moduli spaces that naturally
show up in enumerative geometry. We will construct the moduli space of smooth cubic
surfaces in CP3 and show that there are exactly 27 lines on each one of them leveraging the
covering space structure of an incidence correspondence. Furthermore, we will discuss the
automorphisms of the collection of 27 lines and its connections to the moduli space of cubic
surfaces.

2 Mapping Class Groups of Surfaces

The classification of surfaces shows that the homeomorphism types of finite-type surfaces are
completely determined by their genus g, number of boundary components b, and number of
punctures n. We denote such a surface by Sb

g,n in this proposal and omit the parameters that
are 0. While a topological classfication is fully realized, there is no canonical homeomorphism
between two surfaces of the same type. Mapping class groups naturally arise as we seek to
understand the distinct ways a surface can be homeomorphic to another. These groups
have broad applications in higher dimensions, such as describing how three-manifolds can be
constructed by gluing along boundary surfaces and studying surface bundles through their
monodromy representations.
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Definition 2.1. The mapping class group of a surface S possibly with boundary ∂S, denoted
by Mod(S), is the group

Mod(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S) ≅ π0(Homeo+(S, ∂S)).

That is the group of oriention-preserving homeomorphisms of the surface S modulo the re-
lation of isotopy. In the presence of punctures, we define the pure mapping class group of S
to be the subgroup of Mod(S) that fixes all punctures pointwise, denoted by PMod(S).

In Mod(S), there is a particular type of mappping class called Dehn twists. Cutting
out a tubular neighborhood of a nonseparating curve α in S, we can twist one boundary
component of the annulus by 2π and glue it back to the reset of the surface. The following
result states that such mapping classes serve as generators for pure mapping class groups.

Theorem 2.1 (Finite Generation, [FM12, Theorem 4.1]). For g ≥ 1, PMod(Sg,n) is gener-
ated by finitely many Dehn twists about nonseparating simple closed curves.

Proof Sketch. The proof proceeds by first inducting on the number of punctures n and then
on the genus g.

For induction on n, we begin with the base case of the torus T 2, where Mod(T ) ≅ SL(2;Z)
is indeed generated by two Dehn twists. Then we use the Birman short exact sequence

1→ π1(Sg,n)
PushÐÐ→ PMod(Sg,n+1) → PMod(Sg,n) → 1

for the inductive step, where PMod(Sg,n) is finitely generated by Dehn twists by induction
hypothesis. Since the image of π1(Sg,n) under the Push map is finitely generated by Dehn
twists, this finishes the induction on n.

For induction on g, we assume that the pure mapping class group PMod(Sg−1,n) is finitely
generated by Dehn twists for all n. We construct the curve complex N̂ (Sg,n) where vertices
represent isotopy classes of simple closed curves, and edges connect two vertices if their
isotopy classes have geometric intersection number exactly 1. The key step here is to prove
the connectedness of the N̂ (Sg,n) for g ≥ 2 through a detaild analysis of curves on Sg,n. Using
the connectedness, we can assume that our mapping class fixes an isotopy class of simple
closed curve a, up to composing with finitely many Dehn twists. Cutting the surface along
a, we can now apply the induction hypothesis to the resulting surface PMod(Sg−1,n+2).

Explicit relations among Dehn twists have been studied, and in some cases, finite pre-
sentations have been established [FM12]. Here, we highlight some of the basic relations
involving two Dehn twists.

Proposition 2.1 ([FM12, Chapter 3]). Let a and b be two isotopy classes of simple closed
curves on a surface S. Let Ta and Tb denote the Dehn twists about two simple closed curves
representing a and b respectively. Then the relations between Ta and Tb depend on the geo-
metric intersection number i(a, b) in the following way:

1. (commuting relation) If i(a, b) = 0, then TaTb = TbTa.
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2. (braid relation) If i(a, b) = 1, then TaTbTa = TbTaTb.

3. (no relation) If i(a, b) ≥ 2, then Ta, Tb generate a rank-2 free subgroup of the mapping
class group.

Figure 1: lantern relation:
TxTyTz = Tb1Tb2Tb3Tb4

Aside from the binary relations listed above, there are re-
lations involving three or more Dehn twists. For example, we
have the lantern relation as illustrated in Figure 1, given by
Dehn twists about curves on S4

0 .
Algebraic propeties of the mapping class groups can be de-

duced from these relations. Using the same example as above,
we can deduce from the lantern relation that the first homol-
ogy of mapping class groups for mapping class groups of Sg for
g ≥ 3 must be trivial, i.e., H1(Mod(Sg);Z) = 1 for g ≥ 3 [FM12].

2.1 Subgroups of Mapping Class Groups

In this subsection, we describe two types of subgroups of map-
ping class groups: finite subgroups and torsion free subgroups of finite index.

To understand finite subgroups of Mod(S), we will leverage hyperbolic geometry via the
Nielsen Realization theorem. Recall that symmetries on hyperbolic surfaces are described by
isometries. For a closed hyperbolic surface, there are finitely many isometries. The following
theorem provides an explicit upper bound for the size of the group of orientation-preserving
isometries.

Theorem 2.2 (84(g−1) theorem, [FM12, Theorem 7.4]). If X is a closed hyperbolic surface
of genus g ≥ 2, then ∣ Isom+(X)∣ ≤ 84(g − 1).

Note that for any hyperbolic surface, the only isometry homotopic to identity is identity
itself. As a consequence, isomtries coming from hyperbolic structures allow us to construct
finite subgroups of Mod(Sg). This idea is formalized through the Nielsen Realization The-
orem, which says that every finite subgroup of Mod(Sg) could be realized by an isometry
group Isom+(Sg) for g ≥ 2. Nielsen proved the case for cyclic groups [Nie42]. Here We give
the general case proved by Kerckhoff.

Theorem 2.3 (Nielsen Realization Theorem, [FM12]). Let S = Sg,n with χ(S) < 0. Suppose
G ≤ Mod(S) is a finite group, then there exists a finite group G̃ ≤ Homeo+(S) so that the
natural projection Homeo+(S) →Mod(S) restricts to an isomorphism G̃→ G. Furthermore,
G̃ can be chosen to be a subgroup of isometries of some hyperbolic metric on S.

We will give a proof of the special case of this theorem when G is cyclic in Section 3,
using the topological structure of Teichmuller spaces.

Assuming this theorem, any finite subgroup of Mod(Sg) for g ≥ 2 can be realized as a
group of isometries of some hyperbolic surface.
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Now we switch our focus to constructing torsion free subgroups of Mod(Sg) of finite index.
The action of the mapping class group Mod(Sg) on the first integral homology H1(Sg;Z)
provides a way to understand the group Mod(Sg) through the representation

Ψ ∶Mod(Sg) → Aut(H1(Sg;Z)).

Since the algebraic intersection number on H1(Sg;R) endows it with a symplectic structure
which is preserved by mapping classes, we have an induced map Mod(Sg) → Sp(2g,Z), where
Sp(2g,Z) is the integral symplectic group.

Let the level m congruence subgroup Sp(2g,Z)[m] of Sp(2g,Z) be the kernel of the
reduction homomorphism:

Sp(2g,Z)[m] = ker(Sp(2g,Z) → Sp(2g,Z/mZ)).

We get the following property about this congruence subgroup using modular arithmetic.

Lemma 2.1. [FM12, Theorem 6.8] For g ≥ 1, the congruence subgroup Sp(2g,Z)[m] is
torsion free for m ≥ 3.

These torsion free subgroups pull back to subgroups of Mod(Sg) through the symplectic
representation Ψ. In specific, we define the level m congruence subgroup Mod(Sg)[m] as the
kernel of the composition:

Mod(Sg)[m] = ker(Mod(Sg)
ΨÐ→ Sp(2g,Z) → Sp(2g,Z/mZ)).

To prove that the subgroups Mod(Sg)[m] are torsion free in Mod(Sg), we also need the
following lemma stating that torsion elements in Mod(Sg) could be observed through the
symplectic representation.

Lemma 2.2. [FM12, Theorem 6.9] Let g ≥ 1. If a nontrivial mapping class f ∈Mod(Sg) is
of finite order, then Ψ(f) is not trivial.

Proof. The result is immediate for g = 1. We assume g ≥ 2. Suppose f ∈ Mod(Sg) is of
finite order. Then by Nielsen Realization, we can assume f is represented by a hyperbolic
isometry with respect to some hyperbolic metric. Isometries can only have isolated fixed
point of index 1, Lefschetz theorem applies and we have that Lefschetz number

L(ϕ) = 2 −Tr: (ϕ∗:H1(Sg;Z) → H1(Sg;Z)) ≥ 0.

So Ψ(f) = ϕ∗ cannot be identity for g ≥ 2.

Theorem 2.4. For g ≥ 1, the congruence subgroup Mod(Sg)[m] is torsion free for m ≥ 3.

Furthermore, these congruence subgroups Mod(Sg)[m] have finite index in Mod(Sg),
since Sp(2g,Z/mZ) is finite.

Now we transition from discussing the group-theoretical properties of mapping class
groups to exploring their relationship with the Teichmüller space Teich(Sg). Many of these
group-theoretical properties will now be translated into topological properties of Teich(Sg).
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3 Teichmüller spaces and moduli spaces of surfaces

In this section, we will introduce the Teichmüller space Teich(Sg) and its relation to Mod(Sg).
For this section, let S be a surface with χ(S) < 0.

3.1 Teichmüller Spaces

Definition 3.1. Let S be a surface with χ(s) < 0. A marked hyperbolic structure (X,ϕ) is
a diffeomorphism S →X, where X is a surface with a complete finite-area hyperbolic metric
with totally geodesic boundary. The diffeomorphism ϕ is referred to as the marking. We
say two hyperbolic structures (X1, ϕ1) and (X2, ϕ2) are homotopic if there is an isometry
g ∶ X1 → X2 so that g ○ ϕ1 is homotopic to ϕ2. The Teichmüller space Teich(S) is the space
of marked hyperbolic structures up to homotopy.

We can define a topology on Teich(S) through an algebraic approach. A point in
Teich (Sg) for g ≥ 2 gives a discrete faithful representation ρ ∶ π1(S) → PSL(2,R) up to
conjugation by PGL(2,R). If we consider the set of all discrete faithful representations up
to conjugacy, denoted by DF(π1(Sg),PSL(2,R))/PGL(2,R), points in this space naturally
correspond to points in Teich (Sg). Note that the space DF(π1(Sg),PSL(2,R))/PGL(2,R)
carries a natural topology, inherited from the Lie group topology of PSL(2,R)2g by picking
where to send a set of 2g generators. With this topology, if we take any isotopy class of
simple closed curve α on Sg, then the length function l(α) ∶ Teich(Sg) → R;X ↦ lX(α),
measuring the length of the representing geodesic of the image of α, is continuous. This
property allows us relate the topology of the parametrizing space Teich(Sg) to lengths of
geodesics on specific parametrized objects .

The following theorem shows that the Teichmüller space of Sg is homeomorphic to open
balls of dimension 6g − 6.
Theorem 3.1 (Fenchel-Nielsen Coordinates, [FM12, Theorem 10.6]). For g ≥ 2, we have
Teich(Sg) ≅ R3g−3

+ ×R3g−3.

We offer a heuristic argument for this. For each closed surface Sg for g ≥ 2, a pants
decomposition is a maximal collection of disjoint, non-isotopic, essential simple closed curves.
A pants decomposition of Sg consists of exactly 3g − 3 such curves, dividing Sg into 2g − 2
pairs of pants. We call these curves the pants curves. Fixing a pants decomposition P , every
marked hyperbolic structure (X,ϕ) decomposes into 2g − 2 hyperbolic pairs of pants along
the hyperbolic geodesics representing the pants curves.

Given a hyperbolic pair of pants P , for each pair of distinct boundary geodesics αi

and αj, there is a unique embedded geodesic arc orthogonally connecting them. We call
these arcs seam curves. Cutting along the seam curves yields two isometric right-angled
hyperbolic hexagons. The following proposition tells us that three parameters are sufficient
to parametrize right-angled hyperbolic hexagons up to hyperbolic isometries.

Lemma 3.1. [FM12, Proposition 10.4] Given (x, y, z) ∈ R3
+, there exists a hyperbolic hexagon

whose lengths of three alternating sides are given by this tuple, and this hexagon is unique
up to PSL(2,R).
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If we glue up two isometric right-angled hyperbolic hexagons, we obtain a hyperbolic
structure on a pair of pants. Translating Proposition 3.1 through the bijection between
Teich(P ) and the set of oriented isometry classes of marked right-angled hyperbolic hexagons,
we can derive the following proposition describing Teich(P ).
Lemma 3.2. [FM12, Proposition 10.5] Let P be a pair of pants with boundary components
α1, α2, and α3. Then the map Teich(P ) → R3

+ defined by

χ↦ (lχ(α1), lχ(α2), lχ(α3))

is a homeomorphism, where lχ(αi) is the length of the curve αi.

Now to reconstruct the hyperbolic surface X from pairs of pants, we need to specify how
the surface was glued from the 2g − 2 pairs of pants Pi. In particular, boundary circles are
glued in pairs using isometries, requiring exactly 3(2g − 2)/2 = 3g − 3 length parameters.
In addition, we can twist one of the boundary circles by any angle θ ∈ R before glueing
onto the other one, resulting in different marked hyperbolic structures. For example, if
we twist one boundary circle by exactly 2π, then this corresponds to a Dehn twist of the
initial marking about the boundary circle. Thus, we need exactly 3g − 3 twist parameters,
along with 3g − 3 length parameters, to determine a hyperbolic structure. In fact, different
twisting parameters give different hyperbolic strucutres. This concludes the discussion of
Theorem 3.1. The homeomorphism R3g−3

+ ×R3 ≅ Teich(S) gives a system of Fenchel-Nielsen
coordinates.

Now we take a short detour to use this topological structure of the space Teich(Sg) as
a contractible space to prove a special case of Theorem 2.3, Nielsen Realization for cyclic
groups.

Proof Sketch of Nielsen Realization for Cyclic Groups. Suppose f ∈ Mod(Sg) has finite or-
der n. Then the cyclic group H = ⟨f⟩ acts on Teich(Sg). If H acts on Teich(Sg) properly
discontinuously and freely, then the quotient Teich(Sg)/H would be a finite-dimensional
model of a classifying space of H. However, classifying spaces of cyclic groups are infinite
dimensional. So fk must have a fixed point for some k ∈ N. If n is prime, this implies that
f has a fixed point. If not, we induct on the number of prime factors of n.

So far we discussed the topology of Teich(Sg). In fact, for any two marked hyperbolic
structures (X,ϕ) and (Y,ψ), or equivalently two conformal structures up to equivalence,
there is a natural way to compare them and thus gives rise to a notion of a distance.
In specific, Teichmüller proved that there exists a unique quasiconformal homeomorphism
X → Y that minimizes the quasiconformal dilation in a given homotopy class [FM12, The-
orem 11.8, 11.9]. If we consider the homeomorphisms X → Y that corresponds to maps
homotopic to id ∶ Sg → Sg, there is a unique quasiconformal one that distorts angles the
least, called the Teichmüller map. Let K be the dilation, then we can define the distance
dTeich((X,ϕ), (Y,ψ)) = 1

2 logK. This distance function induces a metric on Teich(Sg) called
the Teichmüller metric. This additional structure allows us to describe how lengths of curves
change from a hyperbolic surface to another given the Teichmüller distance betwen them,
which is formalized by Wolpert’s lemma in the next subsection.
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3.2 Moduli Spaces

The mapping class group Mod(S) ≅ Diff+(S)/Diff0(S) acts on Teich(S). Let f ∈ Mod(S).
Suppose f is represented by some ϕ ∈ Diff+(S). Then we define the action by precomposition
of marking. That is, f ⋅ (X,ψ) = (X,ψ ○ ϕ−1). This is well-defined since isotopic maps give
rise to homotopic hyerbolic structures. Futhermore, we can see from this definition that
f ⋅ (X,ψ) is the point in Teich(S) given by the same hyperbolic surface, but with a different
marking. We will show that this action is properly discontinuous, exploiting the following
lemma of hyperbolic geometry on the level of spaces.

Lemma 3.3 (Discreteness of Raw Length Spectrum, [FM12, Lemma 12.4]). Let X be a
compact hyperbolic surface and let L > 0. Then the number of closed geodesics of length less
than L is finite.

Now we will link this geometric property about specific hyperbolic surfaces to Teichmüller
space through the following lemma.

Lemma 3.4 (Wolpert’s Lemma, [FM12, Lemma 12.5]). Let X1 and X2 be hyperbilic surfaces
and let ϕ ∶X1 →X2 be a K-quasiconformal homeomorphism. For any isotopy class c of simple
closed curves in X1, the following inequalities hold:

lX1(c)
K

≤ lX2(ϕ(c)) ≤KlX1(c).

Theorem 3.2 (Fricke, [FM12]). The action of Mod(S) on Teich(S) is properly discontinu-
ous.

Proof. Let B ⊆ Teich(S) be a compact domain. We need to show that {f ∈ Mod(S) ∶
f ⋅ B ∩ B ≠ ∅} is finite. Consider a finite collection S of isotopy classes of closed curves
such that only the trivial mapping class fixes all of them and let L be their maximal length.
Choose a point (X,ϕ) ∈ B. Then any f ∈Mod(S) such that f ⋅B ∩B ≠ ∅, the new marking
f ⋅ (X,ϕ) ∈ Teich(S) is at most distance 2 ⋅Diam(B) away from (X,ϕ) with respect to the
Teichmüller metric. By Wolpert’s lemma, the lengths of curves in S with respect to f ⋅(X,ϕ)
are bounded by e4⋅Diam(B)L. According to Lemma 3.3, there are only finitely many isotopy
classes of curves with lengths bounded above by e4⋅Diam(B)L. Since there are only finitely
many maps from S to the set of isotopy classes of curves of lengths at most e4⋅Diam(B)L, there
can be at most finitely many f such that f ⋅B ∩B ≠ ∅.

Remark 3.1. With respect to the Teichmüller metric, the action Mod(S) on Teich(S) is
through isometries.

Now let g ≥ 2. Since Mod(Sg) acts on Teich (Sg) ≅ R6g−6 properly discontinuously by
change of marking, we can take the quotient to get the moduli space of hyperbolic structures,
where we forget the marking information.

Definition 3.2. The moduli space of genus-g Riemann surfaces is

M(Sg) = Teich(Sg)/Mod(Sg).
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Note that the mapping class group Mod(Sg) does not act freely on Teich(Sg), and the
fixed points come from the symmetries of hyperbolic structures. For example, any element
in Mod(S) that can be represented by an orientation-preserving isometry with respect to a
hyperbolic structure X fixes (X,ϕ). The stabilizer of a point (X,ϕ) ∈ Teich(S) is given by
mapping classes of orientation-preserving isometries of the hyperbolic surface X, the size of
which is upper bounded. Since the mapping class group action is not free, quotientM(Sg)
is an orbifold rather than a manifold. However, this is the nicest type of orbifold, as it
is finitely coverd by a manifold. Recall that for m ≥ 3, the level m congruence subgroup
Mod(Sg)[m] ≤ Mod(Sg) is a torsion free subgroup of finite index. Since Mod(Sg) acts
properly discontinuously on Teich(Sg), the stabilizer of any point x ∈ Teich(Sg) is finite and
thus not contained in Mod(S)[m]. Hence the action of Mod(S)[m] on Teich(S) is free
and the quotientMg[m] ∶= Teich(S)/Mod(S)[m] is a manifold. This manifold is a normal
covering space of the moduli space, via the projection Mg[m] → Mg, and the deck group
given by Sp(2g,Z/mZ)

The space M(Sg) is not compact, and this is observed by a geometric invariant of hy-
perbolic surfaces. Let l(X) be the length of the shortest essential closed geodesic in X.
Mumford’s compactness criterion uses this quantity l(X) to give explicit descriptions of
compact subspaces, as illustrated as follows:

Theorem 3.3 (Mumford’s Compactness Criterion). Let g ≥ 1. For each ε > 0, the space
Mε(Sg) = {X ∈ M(Sg) ∶ l(X) ≥ ε} is compact.

Lemma 3.5 (Bers’ Constant). Let S be a compact surface with χ(S) < 0. There is a
constant L = L(S) such that for any hyperbolic surface X homeomorphic to S, there is a
pants decomposition of X such that all the pants curves have lengths bounded above by L.

Remark 3.2. This constant L only depends on the underlying topological structure.

Proof of the Mumford’s Compactness Criterion. When g = 1, the compactnes of Mε(S1) =
Mε(T 2) follows from the fact that any infinite sequence of lattices has a convergent subse-
quence, where the limit is non-degenerate.

For g ≥ 2, we can show that Mε(Sg) is sequentially compact for any ε. Consider a
sequence in Xi ∈ Mε(Sg) and lift all elements to Xi ∈ Teich(Sg). For each lift, there eixsts
a pants decomposition Pi so that all pants curves have lengths bounded above by L. Up to
mapping class group action, we may assume that there is a subsequence Xij with Pij = P
for some pants decomposition P and thus all length parameters are bounded above by L
by Lemma 3.5 and bounded below by ε. Twisting factors can also be adjusted by mapping
classes to be in the range [0,2π]. Thus we can find a subsequence of Xi ∈ Mε(Sg) that lifts
to a compact box in Teich(Sg) and thus must converge.

Since M(Sg) = ⋃ε>0Mε(Sg), Theorem 3.3 tells us that the only way for a sequence to
leave every compact set inM(Sg) is by pinching some simple closed curve short.
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4 Cubic Surfaces

In this section, we discuss the second example of a moduli space of varieties.

4.1 Hypersurfaces in CPn

Degree d hypersurfaces in CPn are defined as V (f) = f−1(0) for a degree d homogeneous
polynomial f ∈ C[x0, . . . , xn]. This polynomial has equation f = ∑I aIx

I where xI repre-
sents a degree d monomial in x0, . . . , xn. There are (n+d+1d

) monomials of degree d in total,
and two choices of coefficients give the same hypersurface if and only if they are scalar
multiples of each other. Thus we can parametrize all such surfaces by projective space

CPN ∶= CP(n+dd )−1. A hupersurface V (f) is called singular if there exists [p0 ∶ . . . ∶ pn] ∈ CPn

such that ∂f
∂xi
(p0, . . . , pn) = 0 for all 0 ≤ i ≤ n. Let Σd,n denote the set of singular hypersurfaces

of degree d in CPn, called the singular locus . This is an algebraic set given by a polynomial
in the coefficients {aI}, called the resultant . Carving out this singular locus, we have the
space of smooth degree d hypersurfaces, called Xd,n. Note that the space Xd,n ⊆ CPN is a
path-connected smooth manifold because Σd,n has real codimension 2 and is closed with re-
spect to the analytic topology. This topological property gives rise to the following statement
about degree d hypersurfaces in CPn.

Theorem 4.1. Any two smooth degree d hypersurfaces in CPn are diffeomorphic for n ≥ 1
and d ≥ 1.

Proof. Consider the universal family of degree d hypersurface in CPn, defined as

Ud,n = {(X,p) ∶X ∈Xd,np ∈M} ⊂Xd,n ×CPn.

We have an incidence variety projection Ud,n
πÐ→Xd,n; (M,p) ↦M , which is a proper submer-

sion. By Ehresman’s theorem, this forms a fiber bundle. Since Xd,n is path-connected, all
fibers are diffeomorphic, and these fibers are precisely the smooth degree d hypersurfaces.

For the remainder of this proposal, we will focus on cubic surfaces in CP3, which are by

degree 3 homogeneous polynomials in C[x0, . . . , x3]. The moduli space is given by CP(
n+d
d
)−1 =

CP19. The singular locus Σ3,3 is a hypersurface in CP19 and the space of smooth cubic surfaces
is given by X3,3 = CP19 ∖Σ3,3. Theorem 4.1 tells us that all cubic surfaces are diffeomorphic
to each other.

4.2 Cubic Surfaces and 27 lines

In Section 4.1 we used the universal bundle Ud,n
πÐ→ Xd,n; (X,p) ↦ X to determine the

diffeomorphism type of smooth degree d hypersurfaces in CPn.
We will discuss additional structures of fibers captured by this universal bundle for cu-

bic surfaces in CP3. Every smooth cubic surface has exactly 27 lines on them, and this
statement can be proved using a similar framework as Theorem 4.1: construct the incidence
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correspondence of lines on cubic surfaces, take a look at a particular fiber, and generalize
that to every single fiber by the connectedness of the base space.

First, observe that lines on the Fermat cubic X = V (x30 + x31 + x32 + x33) ⊆ CP3 can be
computed explicitly. Let ω = e2πi/3 be a third root of unity. There are 9 lines given by
(x0 ∶ ωix0 ∶ x2 ∶ ωjx2) for some 0 ≤ i, j ≤ 2. Then by linear change of coordinates, there are
27 lines in total.

Lemma 4.1 (Fermat Cubic). The Fermat cubic X = V (x30 + x31 + x32 + x33) ⊆ CP3 contains
exactly 27 lines.

Now we construct the incidence correspondence of lines on cubic surfaces. Consider

M ∶= {(X,L) ∶ L is a line on X} ⊆X3,3 ×G(2,4),

where G(2,4) is the Grassmannian of 2-dimensional planes in a 4-dimensional vector space,
or equivalently lines in CP3. There is a natural projection π ∶M → X3,3; (X,L) ↦ X, where
the lines on a cubic surface is just its preimage under π.

Lemma 4.2. The projection π ∶M →X3,3; (X,L) ↦X is a covering.

Proof. We prove the statement in two steps: First, we show that the incidence correspon-
dence is closed in the Zariski topology of X3,3 ×G(2,4), cut out by polynomials. Second, we
show that the map π ∶M →X3,3 is a local diffeomorphism at line in G(2,4).

For the first part, consider the affine chart U of G(2,4), given by Plucker coordinates

{(1 0 x y
0 1 z w

) ∶ x, y, z,w ∈ C} ,

where we take the row spans of the matrices to represent planes in C4, i.e., lines in CP3.
Recall that we have coordinates (aI) for X3,3 ⊆ CP19, given by the cubic polynomials

f = ∑I aIx
I . So we have coordinates for the product X3,3×G(2,4), denoted by (aI , x, y, z,w).

The condition for a line to lie on a cubic surface X = V (faI) is that the polynomial
faI(s(1,0, x, y) + t(0,1, z,w)) = 0 for all s, t ∈ C. Expanding this expression, the coefficients
of s3, s2t, s1t2, t3 must all vanish, which gives us four polynomial conditions fi in variables
aI , x, y, z,w.

Applying the implicit function theorem to polynomials fi, we can check that π ∶M →X3,3

is a local diffeomorphism at (x, y, z,w) = (0,0,0,0). By linear change of coordinates, we get
that the map π ∶M →X3,3 is a local diffeomorphism at any (x, y, z,w) ∈ C4.

Now, for any compact subset K ⊆ X3,3, we have that π−1(K) is Zariski closed in K ×
G(2,4), which is compact, so the projection π is proper. Combining these results, we know
that π ∶M →X3,3 is a proper local diffeomorphism, and thus a covering map.

Now we can leverage the topology of π ∶M →X3,3 as covering spaces to extract informa-
tion about each of the fiber.

Theorem 4.2. Every smooth cubic surface contains exactly 27 lines.
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Proof. The cardinality of elements in each fiber of π ∶M →X3,3 is locally constant. But X3,3

is connected, so it is globally constant. Since there are exactly 27 lines on the Fermat cubic,
we know that there are 27 lines on any smooth cubic surface.

The incidence correspondence we constructed above only encodes the information of the
number of lines. If we care about particular geometries, we can define incidence correspon-
dences differently and use a similar trick as before to extend a property of a particular fiber
to all fibers.

Lemma 4.3 (Fermat Cubic). Consider the Fermat cubic X = V (x30 + x31 + x32 + x33) ⊆ CP3.
For any pair of skew lines L1, L2 in X, there are exactly 5 other lines in X meeting both L1

and L2.

Then similarly, we can construct an appropriate incidence correspondence and prove the
following.

Lemma 4.4. For any smooth cubic surface X, any two pair of skew lines L1, L2 in X have
exactly 5 other lines in X meeting both of them.

Using this property, we will give a different desciption of smooth cubic surfaces, with
which we can describe the lines and their intersection patterns explicitly.

Theorem 4.3. A smooth cubic surface in CP3 is birational to CP2. In fact, it is isomorphic
to P2 blow up at 6 points.

Proof. Let X be a smooth cubic surface and let L1, L2 be a pair of skew lines on X.
Let f ∶ X → L1 × L2 defined in the following way. If a ∈ X ∖ L1, let H be the unique

plane in CP3 that contains L1 and a and set f2(a) = H ∩ L2. Similarly, define f1(a). Then
we define f(a) = (f1(a), f2(a)). Note that f1(a) is a point on L1 and f2(a) is a point on L2

and a lies on the unique line that passes through these two lines. This gives a well-defined
morphism X → L1 ×L2. For the inverse, we define L1 ×L2 ⇢X as mapping a pair of points
(a1, a2) ∈ L1×L2 to the third intersection point of X with the line through a1 and a2. This is
not well-defined exactly when the line through a1 and a2 is contained in X, and by Lemma
4.4, we get that there are exactly five such lines. At a special point (a1, a2), f will map the
entire line passing through a1 and a2 to (a1, a2). Then we can take blow ups of L1 × L2 at
these five points and obtain an isomorphism X ≅ Bl5(L1 ×L2).

Since P1 × P1 blown up at one point is isomorphic to P2 blown up in two points, X ≅
Bl6P2.

Under this isomorphism X ≅ Bl6P2, we can give an explicit description of the second
cohomology group of H2(X,Z) ≅H2(Bl6P2,Z).

Proposition 4.1 ([Har77]). The second cohomology group of H2(Bl6P2,Z) is 7-dimensional,
generated by l, e1, . . . , e6 where l represents the hyperplane class and e1, . . . , e6 represents the
exceptional divisors from blowing up P2. Furthermore, these basis elements are mutually
orthogonal with self-intersections l ⋅ l = 1 and ei ⋅ ei = −1.
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We also have a description of exceptional classes, E(S) = {e ∈ H2(Bl6P2,Z) ∶ e ⋅ e =
−1, e ⋅ −KX = 1}. Expressed as a linear combination of basis elements l, e1, . . . , e6, we have a
complete list of E(S):

(a) ei, i = 1, . . . ,6.

(b) l − ei − ej, 1 ≤ i < j ≤ 6.

(c) 2l − ei1 − . . . − ei5 where 1 ≤ i1 < . . . < i5 ≤ 6.

Note that there are exactly 27 of these cohomology classes and this is not a coincidence.
These are exactly represented by the 27 lines on the cubic surface.

Theorem 4.4. [Har77, Theorem 4.9] The 27 lines on a cubic surface X ≅ Bl6P2 each has
self-intersection −1 and they are the only irreducible curves with negative self-intersection on
X. They are

(a) the 6 exceptional lines given by E1, . . . ,E6.

(b) the strict transform of the (62) = 15 lines through two of the blown up points.

(c) the strict transform of the (65) = 6 conics through five of the blown up points.

4.3 The Monodromy Group of the 27 lines

Recall that we have the fiber bundle given by the universal family Un,d →X3,3. We may ask
about how smooth cubic surfaces deform in families. One way to describe this is through
the monodromy representations: as we vary the cubic surfaces over a loop in X3,3, we have
an induced diffeomorphism and thus induced automorphisms on the cohomology groups. In
particular, let’s fix an arbitrary point p ∈X3,3 that represents X ⊆ CP3. Then for each n ≥ 2
we have monodromy representations

ρn ∶ π1(X3,3, p) → GL(Hn(X;Z)).

Since X is a smooth hypersurface in CP3, the monodromy representations ρn are trivial
unless n = 2. So we will focus on the monodromy representation

ρ2 ∶ π1(X3,3, p) → GL(H2(X;Z)).

Recall from Proposition 4.1 that the second cohomology of a cubic surface is given by
H2(X;Z) ≅ Z7, equipped with an intersection pairing that is a symmetric bilinear form
of signature (1,6). The monodromy representations have to preserve this form, and thus
G ∶= ρ2(π1(X3,3, p)) is a subgroup of O(H2(X;Z)).

Lemma 4.5. The monodromy group G is a subgroup of W (E6).
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Proof. Since each surface in X3,3 comes with a canonical embedding in CP3, any element
in the monodromy must fix the the first Chern class of the anticanonical bundle, −KX .
Thus, G ≤ O((KX)⊥) ≤ O(H2(X;Z)). The orthogonal complement of KX can be identified
with the lattice E6 = (ZKX)⊥ ≅ Z6, where the identification is given by the root system
{α0 = l − e1 − e2 − e3, α1 = e1 − e2, . . . , α5 = e5 − e6}. The exceptional classes in E(S), which are
exactly represented by the 27 lines, correspond to certain roots in the E6 lattice. We can
further bound the group G by the induced action on E(S). Define the Weyl group W (E6)
as the subgroup generated by reflections sαi

∶ v ↦ v + (v,αi)αi. This group is isomorphic
to the automorphism group of 27 lines respecting the intersection pairing. In particular,
the generator sα0 gives the quadratic transformation based at points p1, p2, p3 ∈ P2 and the
generators sαi

interchange Ei with Ei+1 for 1 ≤ i ≤ 5. Thus G ≤W (E6).

Theorem 4.5. [Har79] The monodromy group G ≅W (E6).

Proof. By Lemma 4.5, G ≤W (E6). Now we want to show that any element in W (E6) can
be realized by monodromy. First, on a cubic surface X, H2(X,Z) is generated by any set of
six skew lines. So the action of W (E6) on H2(X,Z) is fully determined by where we send
the six lines. Note that there are 72 such unordered sets of six skew lines, and a cardinality
count using orbit stabilier theorem tells us that W (E6) is generated by elements that fix a
set of six skew lines. So it suffices to find loops in X3,3 that inducing any permutation σ on
a set of six skew lines.

Since X is identified with P2 blown up at 6 points (p1, . . . , p6), we can construct an
explicit path between (p1, . . . , p6) and (σ(p1), . . . , σ(p6)) in Conf6(P2). For each t, we
have Bl{pi(t)}6i=1P

2. We can choose sections ϕ0(t), . . . , ϕ3(t) of the anticanonical bundles
of Bl{pi(t)}6i=1P

2 that vary continuously with respect to t, giving embeddings to CP3.
In this way, we constructed a loop in X3,3 that induces the permutation σ on a set of six

skew lines.

Linking back to the degree 27 covering M → X3,3, we can see that the monodromy
representation here is given by ρ ∶ π1(X3,3, p) → S27, by permuting the 27 lines. The image
of this representation exactly agrees with the monodromy group G of the universal family.
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