
MILNOR NUMBERS OF COMPLEX HYPERSURFACES

Zhong Zhang

A THESIS

in

Mathematics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Master of Arts

2023

Supervisor of Thesis
Mona Merling
Assistant Professor of Mathematics

Graduate Group Chair
Ron Donagi
Thomas A. Scott Professor of Mathematics



ii

Acknowledgements

First and foremost, I thank Thomas Brazelton for his guidance within and beyond

this thesis for the past two years. He has been extremely supportive and encouraging

throughout, bearing with me making slow progress towards understanding. I am

especially thankful for his introduction to fascinating areas of mathematics such as

homotopy theory and enumerative geometry, and for the copious amounts of coffee.

I would also like to thank Mona Merling for opening my eyes to topology, my most

beloved field of mathematics. I am grateful to Jonathan Block, Angela Gibney, and

Julia Hartmann for explaining many of the basic concepts underlying these topics.

Yidi Wang has been a great friend in my last year at Penn, always ready to lend a

hand and generously allowing me to appropriate her heating-insufficient office to do

math. I also thank my friends Santiago, Robin, and Marius for helping me clean my

jumbled thoughts while working on my thesis.

I would like to thank my parents, for their patience as I excitedly babble about

mathematical ideas. Despite not speaking English, they made every effort to under-

stand the terminologies that are often mixed in Mandarin and English. I would not

have been who I am today, without their unconditional love and firm support.

Finally, I thank Smith College for cultivating my passion, confidence, and fierceness

in math. I also thank the University of Pennsylvania for its rich resources and bringing

so many amazing mathematicians into my life.



iii

Abstract

Milnor’s study of singular complex hypersurfaces, including the renowned fibration

theorem, give us a rich understanding of isolated hypersurface singularities from a

topological perspective. In this thesis, we will take a closer look at Milnor’s findings

and explore fascinating ideas that have emerged from them.
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1 Introduction

In 1956, Milnor [Mil56] discovered 7-dimensional exotic spheres, smooth 7-manifolds

homeomorphic but not diffeomorphic to the standard 7-spheres. Interestingly, these

exotic spheres are closely related to singular complex hypersurfaces, showing up as

links of isolated singular points. Brieskorn [Bri66a] proved that every exotic sphere of

dimension > 6 that bounds a parallelizable manifold is diffeomorphic to the link of a

singularity.

This motivated Milnor’s study of singular complex hypersurfaces, including the

celebrated fibration theorem. His studies give us a rich understanding of isolated

hypersurface singularities. We start in Section 2 with Milnor’s classical findings and

give interpretations of the Milnor number of an isolated singularity from topological

and algebraic perspectives. In Section 3, we show Kouchnirenko’s estimates of the

Milnor number using Newton Polyhedra [Kou76]. In Section 4, we illustrate how

Milnor numbers behave under deformations of hypersurfaces. We continue with a

discussion of a particular family of hypersurfaces {f−1(t) : t ∈ C} in Section 5 and

conclude with a generalization of Milnor numbers to non-isolated singularities given

by Parusiński in Section 6.
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2 Classical Milnor numbers

2.1 The Milnor fibration

Consider a polynomial f ∈ C[x0, . . . , xn]. The vanishing locus of f is defined as

V (f) := {p ∈ Cn+1 | f(p) = 0}. Such a set is called a complex hypersurface. A

hypersurface may have singular points, which are the points in V (f) where the

gradient ∇f =
(
∂f
∂x0
, . . . , ∂f

∂xn

)
vanishes. These points are of particular interest to us,

because their local topology is distinct from non-singular points on the hypersurface.

If p ∈ V (f) is not singular, then the partial derivatives of f do not all vanish at the

point p. Then ∇f(p) =
(
∂f
∂x0

(p), . . . , ∂f
∂xn

(p)
)
, viewed as a 1× (n+ 1) matrix, has full

rank. So, we can apply the implicit function theorem to conclude that V (f) locally

looks like the graph of a continuous function and hence must be a real 2n-dimensional

manifold. But at singular points, all partial derivatives vanish and we cannot draw

any conclusion using the implicit function theorem.

Brauner [Bra28] used the following construction to study the special case when f

defines a plane curve, i.e., f ∈ C[x0, x1]: Suppose the plane curve V (f) has a singular

point p. The local topology of V (f) at p could be studied by taking small 3-spheres

centered at p and looking at their intersections with V (f). In this way, we are taking

“slices” of V (f) through the lens of 3-spheres of various sizes.

Milnor generalized this idea and introduced the Milnor fibration for singular

algebraic hypersurfaces of arbitrary dimension. For the remainder of this section, most
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results come from Milnor’s book [Mil68].

For a polynomial f ∈ C[x0, . . . , xn], one may consider a small sphere Sε of radius

ε centered around a singular point. That is, let Sε = {q ∈ Cn+1 : ∥q − p∥ = ε} be

a (2n+ 1)-dimensional sphere of radius ε. Milnor proved that for ε > 0 sufficiently

small, Sε intersects V (f) transversally. Since V (f) is a 2n-dimensional algebraic set

over R and Sε is of codimension 1, the intersection Kε := Sε ∩ V (f) is an algebraic

set of codimension 3. The information about the topology of the hypersurface at the

singular point is encoded in the way that Kε embeds in Sε.

Example 2.1. Let f = zm + wn ∈ C[z, w] for some coprime natural numbers m and n.

Then Sε = {(z, w) ∈ C2 : ∥z∥2 + ∥w∥2 = ε2} and V (f) = {(z, w) : zm + wn = 0}. Let

z = reiϕ1 and w = seiϕ2 where r, s ∈ R and ϕ1, ϕ2 ∈ [0, 2π). If (z, w) ∈ Kε = Sε∩V (f),

then r2 + s2 = ε2 and zm + wn = 0. This implies that rmeimϕ1 = −sneinϕ1 , and thus

eimϕ1 = −einϕ1 . Hence, the space Kε would be a torus knot of type (m,n), lying in

the torus parametrized by (reiϕ1 , seiϕ2).

In the case where n = 1, the space Kε may not be a connected object. For example,

the polynomial f = x31 + x62 illustrates that Kε consists of two unknotted circles.

However, when n ≥ 2, the space Kε is guaranteed to be connected. Using Morse

theory, Milnor demonstrated that Kε is (n− 2)-connected.

Here is an example of higher dimension given by Brieskorn: [Bri66b]

Example 2.2. Consider fr = x30 + x6r−1
1 + x22 + x23 + x24 ∈ C[x0, . . . , x4], where r ∈

{1, 2, . . . , 28}. Then, Sε ∩ V (fr) gives 28 spheres that are homeomorphic to the
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standard unit 7-sphere S7, but with different smooth structures.

With the aforementioned construction and for any singular point on V (f), Milnor

defined what we now call the Milnor fibration:

Mf : Sε \Kε → S1

z 7→ f(z)

|f(z)|
.

Milnor used the Curve Selection Lemma [Mil68] to show that the mapMf above has

no critical points, which demonstrates that the fibers of this map are smooth manifolds.

From there he constructed a tangential vector field on Sε \Kε and established that its

behavior is under control when approaching the boundary of the fibers, Kε:

Lemma 2.3. There exists a smooth tangential vector field w on Sε \Kε which satisfies

the following conditions:

• the real part of the inner product ⟨w(z), i grad log f(z)⟩ is identically 1,

• the imaginary part satisfies |Re ⟨w(z), grad log f(z)⟩ | < 1.

Then we may consider the trajectories of the differential equation dz
dt

= w(z). The

two conditions in the lemma above guarantee that solution curves of this differential

equation cannot tend towards Kε as t tends towards some finite limit t0.

Lemma 2.4. Given z0 ∈ Sε \Kε, there exists a unique smooth path p : R → Sε \Kε

which satisfies the differential equation dp(t)
dt

= w(p(t)) with the initial condition

p(0) = z0.
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For each t, the path p(t) defines a diffeomorphism on Sε \Kε which carries fibers

of the Milnor fibration to other fibers. Define

Fθ :=M−1
f (eiθ) = {z ∈ Sε \Kε : f(z) = eiθ}.

Then the path p(t) takes the fiber Fθ to the fiber Fθ+t. This gives the fibration

theorem.

Theorem 2.5 (Milnor’s fibration theorem). The space Sε \Kε is a smooth fiber bundle

over S1, given by the Milnor fibration Mf : Sε \Kε → S1.

Milnor showed that the fiber of this map, Fθ, is a smooth 2n-dimensional paral-

lelizable manifold with the homotopy type of a finite CW-complex of dimension n.

Furthermore, it is (n− 2)-connected.

Fθ is related to the local topology of the singularity by the following theorem.

Theorem 2.6. If the complex number c ̸= 0 is sufficiently close to zero, then the

intersection of the complex hypersurface f−1(c) and the open ε-ball Bε centered at p,

denoted as f−1(c) ∩Bε, forms a smooth manifold diffeomorphic to Fθ.

So, the fiber of the Milnor fibration gives us information about level sets of f that

are close to V (f) = f−1(0). In other words, if we perturb f by a sufficiently small

constant c ∈ C∗, then the corresponding hypersurface locally is diffeomorphic to the

fiber Fθ of the Milnor fibration.

This leads to an equivalent version of Milnor’s fibration theorem, which shows up

frequently in the literature.
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Theorem 2.7 (fibration theorem, second version). Let f ∈ C[x0, . . . , xn] and suppose

that V (f) has a singular point p. Then, there exists 0 < δ ≪ ε such that for all t ∈ Dδ,

the restriction of f to a map f−1(∂Dδ) ∩Bε → ∂Dδ is a smooth fiber bundle, where

Bε is the open ball of radius ε centered at the singularity point p and Dδ denotes the

closed disc of radius δ centered at the origin in C. Moreover, the diffeomorphism type

of this fiber bundle is independent of ε and δ as long as they are sufficiently small.

This fibration f−1(∂Dδ) ∩ Bε → ∂Dδ could be carried to the Milnor fibration

Sε \ Kε → S1 by a smooth flow, which demonstrates the equivalence of these two

fibrations.

We will mostly follow Milnor’s notation in his book and allude to this equivalent

version when necessary.

2.2 Milnor fiber at an isolated singularity

For the rest of this section, we will add the additional assumption that p is an isolated

singularity.

We call p an isolated singularity if it has a neighborhood in Cn+1 containing no

other singular points. In that case, Kε is a smooth submanifold for ε small enough.

In this case, Milnor proved the following result:

Lemma 2.8. Let f be a complex polynomial with an isolated singularity p ∈ V (f).

The topology of the diffeomorphism type of the manifold Kε is independent of the

choice of ε as long as it is sufficiently small.
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Proof. If we consider the function d : (V (f) ∩ Bε) \ {p} → (0, ε) that measures the

distance to the isolated singularity p, we can see that this is a proper smooth function.

Furthermore, it is submersive and surjective. By Ehresmann’s lemma, the function d

is a locally trivial fibration, which shows that Kε is independent of ε.

In the case of isolated singularities, a stronger description of the fiber is given:

Using Morse theory, Minor [Mil68] showed that the fiber Fθ must be (n−1) connected.

Combining this with some results from the last subsection, we know the homotopy

type of Fθ:

Theorem 2.9. Fθ is homotopy equivalent to a finite bouquet of spheres ∨iSn.

Proof. In the previous subsection, it was established that Fθ is a parallelizable manifold

with a dimension of 2n and homotopy type equivalent to a finite CW complex with

dimension n. As a result, the cohomology group of dimension n+ 1 vanishes. Then

by Poincaré Duality, the homology group of dimension n− 1 is also trivial. Therefore,

Hn(Fθ) must be finitely generated free abelian.

Since Fθ is (n− 1)-connected, we can use the Hurewicz theorem to deduce that

πn(Fθ) ∼= Hn(Fθ) must be finitely generated free abelian for n ≥ 2. This implies

that we have a based map Sn ∨ . . . ∨ Sn → Fθ, where each Sn → Fθ corresponds

to a generator of πn(Fθ). Note that the map Sn ∨ . . . ∨ Sn → Fθ induces homology

isomorphisms. By the generalized Whitehead theorem, we know that the map is in

fact a homotopy equivalence.
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For n = 1, Fθ is homotopy equivalent to a path-connected finite CW complex of

dimension 1, which is a finite graph. Then consider a maximal tree in this graph,

which exists because Fθ is path-connected. There exists a retract that exactly maps

this tree to a 0-cell, that is, a vertex. The image of this retract is exactly a finite

bouquet of loops. Hence, Fθ ≃ ∨iS1.

Furthermore, Milnor noticed that Smale’s h-cobordism theorem in high dimensions

would imply that the closure of Fθ is actually diffeomorphic to the connected sum of

a 2n-ball with µ handles of middle dimension, if n ̸= 2. This dimension gap was filled

by Lê and Perron [TP79] later using another construction, which actually works in all

dimensions.

The following definition counts the number of spheres in the bouquet Sn ∨ . . .∨Sn.

Definition 2.10. Let f ∈ C[x0, . . . , xn] with an isolated singularity p ∈ V (f) Then

the Milnor number µp(f) of f at p is

µp(f) := rankHn(Fθ).

Remark 2.11. The Milnor number µp(f) is related to the Euler characteristic of Fθ.

The Euler characteristic of Fθ is defined to be

χ(Fθ) =
∑

(−1)i rankHi(Fθ).

Since Fθ only has nontrivial homology groups in degree 0 and n,

χ(Fθ) = 1 + (−1)n rankHn(Fθ) = 1 + (−1)nµp(f).
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Example 2.12. Let f = zm + wn ∈ C[z, w]. The fiber Fθ is a Seifert surface with

boundary Kε, which we computed to be a knot of type (m,n). The genus of this knot

is given as (m−1)(n−1)
2

by knot theory, and thus

χ(Fθ) = 2− 2 · (m− 1)(n− 1)

2
− 1 = 1− (m− 1)(n− 1).

Then by the remark above, the Milnor number of f at the singular point 0 is

µ0(f) = (−1)1(χ(Fθ)− 1) = (−1)(1− (m− 1)(n− 1)− 1) = (m− 1)(n− 1).

2.3 Topological interpretation of the Milnor number

Next we take a slight detour through the notion of topological degree, which will give

us an interesting interpretation of the Milnor number at isolated singular points.

Let g : Sn → Sn with n > 0. The induced map on the n-th homology groups

g∗ : Hn(S
n) → Hn(S

n) is a homomorphism of the form g∗(x) = dx for some d ∈ Z

depending only on g. In this way, one can associate an integer to each map from Sn

to Sn. Since homotopy equivalent maps induce the same homology homomorphisms,

this association gives rise to a well-defined degree map deg : [Sn, Sn] → Z.

Extending from this degree map between spheres, one can define a notion of local

degree of maps between manifolds of the same dimension.

Definition 2.13. Let M and N be compact oriented n-dimensional manifolds and

let f : M → N be a smooth map. Consider a point q ∈ N whose preimage f−1(q)

is a finite collection of points. Let p ∈ f−1(q). Take an open ball V centered at q.
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Suppose U is a sufficiently small open ball centered at p so that its image under f

is completely contained by V and U ∩ f−1(q) = ∅. Then, f induces a map on the

homology: f∗ : Hn(U,U \ {p}) → Hn(V, V \ {q}).

Since Hn(U,U \ {p}) ∼= Hn(V, V \ {q}) ∼= Hn(S
n), using the excision and long

exact sequence of homology groups, we have the following commutative diagram:

Hn(U,U \ {p}) Hn(V, V \ {q})

Hn(S
n) Hn(S

n).

f∗

∼= ∼=

The local degree of f at p, which we call degtopp (f), is defined as the image of 1

under the induced map from Hn(S
n) to Hn(S

n).

Now let’s return to the discussion of Milnor numbers.

Recall our assumption that p is an isolated singularity of V (f), which means it is

a zero of the function

∇f : Cn+1 → Cn+1;

x 7→
(
∂f

∂x0
, . . . ,

∂f

∂xn

)
.

If we take an open ball in the codomain at 0 and a corresponding isolating open

ball in the domain at p, we can follow the procedure mentioned above to compute the

local degree of ∇f at p. Roughly speaking, the local topological degree captures how

many times a local neighborhood of the domain wraps around a local neighborhood

of the codomain.

The connection between the local degree and the Milnor number is given by the

following theorem proven by Milnor.
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Theorem 2.14. The Milnor number of f at the point p equals the local degree of ∇f

at p. That is, µp(f) = degtopp (∇f).

The basic idea behind the proof given by Milnor is that the the degree of ∇f is

related to the Euler characteristic of Fθ by a formula, giving us a bridge to the the

Milnor number.

This theorem provides us with an interesting interpretation of the Milnor number

using the local topological degree: If we perturb ∇f slightly, then p should split up into

a cluster of µp(f) points. In this sense, the Milnor number of p measures the degeneracy

of the singularity of V (f) at p. In particular, if the singularity is nondegenerate, which

means the Jacobian matrix of ∇f is invertible at p, then µp(f) = 1.

Example 2.15. Consider f(z, w) = zm + wn ∈ C[z, w]. The gradient of the function is

given by

∇f : C2 → C2;

(z, w) 7→ (mzm−1, nzn−1).

The local degree of the map

ϕ : C1 → C1;

z 7→ mzm−1

is measured by the image of the generator 1 under the induced map on the second
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cohomology group of S2:

H2(S
2;Z) → H2(S

2;Z);

1 7→ degtop0 (ϕ) = m− 1.

Similarly, for the map

ψ : C1 → C1;

w 7→ nwn−1,

we have

H2(S
2;Z) → H2(S

2;Z);

1 7→ degtop0 (ψ) = n− 1.

Since H2(S
2;Z) is finitely generated and free, we can take coefficients in R instead.

Then the Kunneth formula for the homology of relative CW pairs helps us compute

the local degree of the map ∇f at 0: there exists a natural isomorphism

H̃2(S
2;R)⊗R H̃2(S

2;R) → H̃4(S
2 ∧ S2;R);

1⊗ 1 7→ 1.

So we have the following commutative diagram:

H̃4(S
2 ∧ S2;R) H̃4(S

2 ∧ S2;R)

H̃2(S
2;R)⊗R H̃2(S

2;R) H̃2(S
2;R)⊗R H̃2(S

2;R).

(∇f)∗

∼= ∼=

ϕ∗⊗ψ∗
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The local degree of the map ∇f : C2 → C2 is determined by the image of 1 in the

induced map H̃2(S
2 ∧ S2;R) → H̃2(S

2 ∧ S2;R).

It follows from the diagram that

(∇f)∗(1) = ϕ∗(1)ψ∗(1) = degtop0 (ϕ) degtop0 (ψ) = (m− 1)(n− 1).

Therefore, we can conclude that degtop0 (∇f) = (m − 1)(n − 1), which is consistent

with our previous computation using the Euler characteristic.

2.4 Algebro-geometric interpretation of the Milnor number

With some basic tools in algebraic geometry, the Milnor number at a singularity has

another interpretation.

If a point p is an isolated singularity of a complex hypersurface V (f), then

p ∈ V (∇f) = V

(
∂f

∂x0
, . . . ,

∂f

∂xn

)
= V

(
∂f

∂x0

)
∩ . . . ∩ V

(
∂f

∂xn

)
.

Since we assumed that p is an isolated singularity, we may see that the partial

derivatives can’t share a common component and thus the intersection V
(
∂f
∂x0

)
∩

. . . ∩ V
(
∂f
∂xn

)
in Cn+1 is expected to be finite. Then, we can count the number of

intersection points contributed by the point p: the intersection multiplicity at p is given

by the dimension of the local algebra at p, dimC

(
C[x0, . . . , xn]

/(
∂f
∂x0
, . . . , ∂f

∂xn

))
mp

,

where mp is the maximal ideal corresponding to the point p.

We can understand the dimension of the local algebra in the following way: First,
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since localization commutes with quotients,(
C[x0, . . . , xn]

/(
∂f

∂x0
, . . . ,

∂f

∂xn

))
mp

∼=
(
C[x0, . . . , xn]mp

/(
∂f

∂x0
, . . . ,

∂f

∂xn

))
.

We may see that the localization C[x0, . . . , xn]mp contains a unique maximal ideal

mp, then the multiplicity of V (∇f) at p is the largest integer µ such that ∇f ∈ mµ
p and

∇f /∈ mµ+1
p . Since f is described by a complex polynomial with respect to complex

coordinates, we can write f(x) = f0 + f1(x) + . . . + fk(x) with fi(x) homogeneous

of degree i. The hypersurface V (f) contains p if f0 = f(p) = 0 and the intersection

multiplicity can be described concretely: if f0 = . . . = fµ−1 = 0 and fµ ̸= 0, then µ is

the multiplicity of V (f) at p. In short, the multiplicity is defined as the lowest degree

in the power series expansion of f at p ∈ Cn.

Milnor [Mil68] and Palomodov [Pal67] showed that this algebraic definition of

intersection multiplicity agrees with the topological degree, which gives rise to the

following theorem.

Theorem 2.16. The Milnor number of f at p equals the intersection multiplicity of

the vanishing loci of the partial derivatives at the point p. That is,

µp(f) = dimC

(
C[x0, . . . , xn]

/(
∂f

∂x0
, . . . ,

∂f

∂xn

))
mp

.

So the Milnor number reflects the number of algebraically independent directions

at the singular point of the hypersurface.

Example 2.17. We refer back to the example in the last subsection: Let f = zm+wn ∈

C[z, w] for coprime natural numbers m,n ≥ 2. Then the intersection multiplicity of
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V (∂f
∂z
) and V ( ∂f

∂w
) at 0 is given by

dimC

(
C[z, w]

/(∂f
∂z
,
∂f

∂w

))
(z−0,w−0)

= dimC
(
C[z, w]

/ (
mzm−1, nzn−1

))
(z,w)

= (m− 1) (n− 1) .

The theorem above tells us that the Milnor number at 0 is µ0(f) = (m− 1)(n− 1).

Remark 2.18. One benefit of this algebraic interpretation of the Milnor number is that

it enables easy computations, as we can see from the example above.
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3 Newton polyhedra and Milnor numbers

With the Milnor numbers defined in the previous section, we may ask whether we can

estimate the Milnor number of an isolated singularity directly from the expression of

the polynomial.

Kouchinrenko [Kou76] provided an answer to this question by utilizing a combina-

torial object known as the Newton polyhedron. From there he defined the Newton

number and illustrated that this number serves as a lower bound for the Milnor

number. His results apply to more general functions like Laurent series or formal

power series, where the Milnor number is allowed to be infinite. For our purposes,

we will only focus on complex polynomials. Nevertheless, the definitions and results

presented in this section can be extended to include series.

We start with the definition of the Newton polyhedron.

Definition 3.1. Consider a polynomial f =
∑

I∈Nn aIx
I . The support of f is supp f :=

{I ∈ Nn : aI ̸= 0}. We define the Newton polyhedron Γ+(f) of f as the convex hull of

supp f .

Then let the Newton boundary of f , denoted Γ(f), to be the union of the compact

faces of Γ+(f) that one can “view” from the origin, i.e., the union of all faces γ of

Γ+(f) such that Γ+(f) ∩ (conv({0} ∪ γ)) = γ. Let Γ−(f) denote the polyhedron⋃
γ∈Γ(f) conv({0} ∪ γ), which is the cone of Γ(f) over 0.

We can see from the definition that the support of a polynomial f does not tell

the difference of coefficients of monomials in it. For example f1(x0, x1) = x20 + x31
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and f2 = 2x20 + 4x31 both have support {(2, 0), (0, 3)}. When we take the Newton

polyhedron, i.e, the convex hull of the support of f , we lose information about f , but

many properties of the polynomial and the algebraic variety defined by it depend only

on the Newton polyhedron of f .

In some sense, the behavior of a polynomial is determined by the powers of the

monomials in it. For example, by the fundamental theorem of algebra, the number

of roots of a polynomial f ∈ C[x] is determined by the monomial of highest degree.

The multiplicity of 0 as a root is captured by the monomial of lowest degree. Thus,

the difference between the highest and the lowest degrees measures the number of

roots in C∗. This difference is exactly encoded in the size of the Newton polyhedron

of f , which is the length of a line segment in the 1-dimensional case. This behavior

generalizes to higher dimensions: the number of nonzero solutions to a generic system

of polynomial equations equals the mixed volume of the Newton polyhedra of these

polynomials.

Example 3.2. Take the polynomial with two variables f = 2x30 + 3x0x1 + x41. The

support of f is given by supp f := {(3, 0), (1, 1), (0, 4)}. Then, the Newton polyhedron

Γ+(f) is the convex hull of {m+ x | m ∈ supp f, x ∈ Rn
+}.

The Newton boundary Γ(f) consists of the line segment from (3, 0) to (1, 1) and

the line segment from (1, 1) to (0, 4). The compact polyhedron Γ−(f) is the polygon

with vertices (0, 0), (3, 0), (1, 1), (0, 4).
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Γ−(f)

Γ(f)

Γ+(f)

(3, 0)0

(0, 4)

Figure 1: Newton polyhedron of f = 2x30 + 3x0x1 + x41

Definition 3.3. We call a polynomial f convenient if the Newton polyhedron of f

intersects all coordinates, that is, for all 1 ≤ i ≤ n, there exists monomials xkii in f

for some ki ∈ N with nonzero coefficients.

Remark 3.4. This convenient condition guarantees that the polynomial is well-behaved.

In particular, the partial derivatives vanish only in a certain range.

Definition 3.5. Let S be a compact polyhedron, then the Newton number of the

polytohedron S is defined as

ν(S) = n!Vn − (n− 1)!Vn−1 + · · ·+ (−1)n−1V1 + (−1)n,

where the Vn is the n-dimensional volume of S for 1 ≤ k ≤ n− 1 and Vk is the sum

of the k-dimensional volumes of S ∩ RI where I = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n} and

RI = {x = (x1, . . . , xn) | xi ∈ R and xi = 0 if i ̸∈ I}.
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Definition 3.6. When f is convenient, the Newton number of f , denoted by ν(f), is

defined as the ν(Γ−(f)).

Example 3.7. Continuing from Example 3.2, we take f = 2x30+3x0x1+x
4
1. We may see

that the Newton number of f is given by ν(f) = 2!V2−(2−1)!V1+(−1)2 = 7−7+1 = 1.

Definition 3.8. For a face γ of Γ(f), we write fγ(z) :=
∑

m∈γ amx
m. We say that f

is non-degenerate on Γ(f) if for any face γ of Γ(f), the equations x1
∂fγ
∂x1
, · · · , xn ∂fγ∂xn

have no common roots in (C∗)n.

For polynomials that are non-degenerate, solutions to x1
∂fγ
∂x1

= · · · = xn
∂fγ
∂xn

all

show up at points where at least one coordinate is 0. So, all solutions can be captured

by looking at Cn \ (C∗)n. Note that this condition is almost always satisfied: when we

restrict to a face of the Newton boundary Γ(f), there are fewer variables showing up,

but since we still have n equations, there are generically no common solutions.

Now we will try to motivate the alternating sum formula for the Newton number

ν(f) and its relation to the Milnor number µo(f). We start with the following lemma.

Lemma 3.9 ([Kou76]). Let g′, g′′, g2, . . . , gn ∈ C[x1, . . . , xn] and let g1 = g′g′′. Then,

dimC
(
C[x1, . . . , xn]m0

/
(g1, g2, . . . , gn)

)
=dimC

(
C[x1, . . . , xn]m0

/
(g′, g2, . . . , gn)

)
+dimC

(
C[x1, . . . , xn]m0

/
(g′′, g2, . . . , gn)

)
.

We may see that V (g1) = V (g′g′′) = V (g′) ∪ V (g′′). Since the dimension of the

local algebra picks up the intersection multiplicity of at the point, this is just counting
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the total intersection multiplicity by summing up the ones contributed by V (g′) and

V (g′′) respectively.

So, dimC

(
C[x1, . . . , xn]m0

/(
x1

∂fγ
∂x1
, · · · , xn ∂fγ∂xn

))
splits up into the sum of 2n terms

by iterative application of the lemma above, where one of these terms exactly gives

the Milnor number at 0: µ0(f) = dimC

(
C[x1, . . . , xn]m0

/(∂fγ
∂x1
, · · · , ∂fγ

∂xn

))
.

Kouchnirenko [Kou76] discovered a relationship between the Newton polyhedron

of f and dimC

(
C[x1, . . . , xn]m0

/(
x1

∂fγ
∂x1
, · · · , xn ∂fγ∂xn

))
if f is convenient and non-

degenerate on the Newton boundary.

Lemma 3.10. If f ∈ C[x1, . . . , xn] is a convenient polynomial that is non-degenerate

on the Newton boundary Γ(f), then

dimC

(
C[x1, . . . , xn]m0

/(
x1
∂f

∂x1
, · · · , xn

∂f

∂xn

))
= n!Vn,

where Vn is the n-dimensional volume of Γ−(f).

Since restrictions of Newton boundaries of convenient polynomials non-degenerate

on Γ(f) to hyperplanes xi = 0 give rise to faces of Newton boundaries, they still

correspond to convenient polynomials non-degenerate on their Newton boundaries.

The formula in the lemma above applies iteratively. For example,

dimC

(
C[x1, . . . , xn]m0

/(
x1, x2

∂fγ
∂x2

, · · · , xn
∂fγ
∂xn

))
=dimC

(
C[x2, . . . , xn]m0

/(
x2
∂fγ
∂x2

, · · · , xn
∂fγ
∂xn

))
=(n− 1)! volume(Γ−(f) ∩ V (x1))
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Now we may compute the Milnor number at 0, µ0(f), by subtracting off the 2n− 1

unwanted terms. The unwanted terms have at least one component given by xi = 0 for

some 1 ≤ i ≤ n. For each i, there are 2n−1 terms in total that have the i-th component

given by xi = 0. We obtain the sum of intersection multiplicities contributed by terms

with xi = 0:
∑n

i=1(n− 1)! volume(Γ−(f) ∩ V (xi)) = (n− 1)!Vn−1. However, since we

have double-counted the terms with xi = xj = 0 for all i ̸= j, we need to add back

them back. The sum of intersection multiplicities contributed by these terms equals∑
i ̸=j(n−2)! volume(Γ−(f)∩V (xi, xj) = (n−2)!Vn−2. But in doing so, we have added

back the terms with xi = xj = xk = 0 for some distinct i, j, k, which we do not want.

To correct this, we can use the inclusion-exclusion principle and continue the same

process recursively. Finally, we obtain the expression

µ0(f) = n!Vn − (n− 1)!Vn−1 + · · ·+ (−1)n−1V1 + (−1)n = ν(f).

If f is degenerate on the Newton boundary Γ(f), meaning that x1
∂fγ
∂x1
, · · · , xn ∂fγ∂xn

do have common roots in (C∗)n for some face γ, then the Newton number only serves

as a lower bound.

Theorem 3.11 ([Kou76], Theorem 1). Let f be a convenient complex polynomial with

an isolated singular point at 0 for V (f). Then,

• µ0(f) ≥ ν(f),

• µ0(f) = ν(f) if f is nondegenerate on Γ(f).
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This result gives an lower bound of the Milnor number at the isolated singularity

0 by the Newton number, which depends only on the Newton polyhedron of f . Note

that even degenerate polynomials on the Newton boundary can have the same value

for µ0(f) as for ν(f), as in the case of f = (x1 + x2)
2 + x1x3 + x23.

Example 3.12. We may check the Milnor number of f = 2x30 + 3x0x1 + x41 at 0.

dimC

(
C[x0, x1]m0

/( ∂f

∂x0
,
∂f

∂x1

))
=dimC

(
C[x0, x1]m0

/ (
6x20 + 3x1, 3x0 + 4x31

))
=dimC

(
C[x0, x1]m0

/ (
6x20 + 3x1, 3x0 + 4x31, x1(8x0x

2
1 − 3)

))
=1.

In this case, it is indeed true that µ0(f) = ν(f).

One of the assumptions for this theorem is that f needs to be convenient. However,

a later lemma established by Oka [Oka79] demonstrated that this assumption was

unnecessary. Oka’s lemma is based on an important observation that we can transform

any polynomial with isolated singularity into a convenient one while preserving the

Milnor fibration:

Lemma 3.13. Let f be an analytic function which has an isolated critical point at the

origin. Consider a family F (z, t) = f(z) + tzA where A = (A1, . . . , A
n) ∈ Nn satisfies

the condition that |A| = |A1|+ . . .+ |An| ≥ µ(f, 0) + 2. Then, the Milnor fibrations of

F (z, 0) and F (z, 1) are equivalent.

Example 3.14. For the polynomial f = zm+wn, we have that supp(f) = {(m, 0), (0, n)}
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and Γ−(f) = conv({(0, 0), (m, 0), (0, n)}). The Newton boundary Γ(f) is given by the

line segment between (m, 0) and (0, n).

Γ(f)

Γ−(f)

0 (m, 0)

(0, n)

Figure 2: Newton polyhedron of f = zm + wn

The Newton number of this polynomial is

ν(f) = 2!V2 − (2− 1)!V1 + (−1)2 = mn− (m+ n) + 1 = (m− 1)(n− 1).

In this case, the Newton number of f exactly agrees with µ0(f) = (m− 1)(n− 1).

One may check that the f is non-degenerate on Γ(f): For the only face γ ∈ Γ(f),

fγ(z, w) = zm + wn. And the equations z ∂fγ
∂z

= mzm, w ∂fγ
∂w

= nwn indeed have no

common roots in (C∗)2.
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4 Milnor numbers under deformations

4.1 Milnor numbers and local topologies

Recall Lemma 2.8 from the previous section. If p is an isolated singularity, Sε ∩ V (f)

does not depend on ε for ε small enough. Moreover, for any ε and ε′ that are

sufficiently small, there always exists a diffeomorphism from Sε to Sε′ that brings Kε

to Kε′ [Mil68]. Therefore, (Bε, Bε ∩ V (f)) is homeomorphic to (C(Sε), C(Sε ∩ V (f))),

where C(X) denotes the cone over X. It is worth noting that the space Kε alone

does not fully determine the local topology of an isolated singularity. In fact, for

any coprime pair m,n, the links defined by f = zm + wn ∈ C[z, w] are torus knots

and thus are homeomorphic to each other, yet the local topologies at the singularity

point 0 are different. To understand the local topology, it is essential to study how

Kε embeds in Sε, or equivalently, how Bε ∩ V (f) embeds in Bε.

Now consider another complex polynomial g with an isolated singularity at the

same point p. A natural question to ask is whether f and g have the same topological

type at p, that is, whether there exists a homeomorphism

(Bε, Bε ∩ V (f)) → (Bε, Bε ∩ V (g)).

This question is closely related to the Milnor numbers of the isolated singularity point.

Let us first note that the Milnor number is an invariant of the hypersurface. That

is, if there is another polynomial g that defines the same hypersurface and shares the

same singularity with f , then the two Milnor numbers are the same.



25

Lemma 4.1 ([CLS20]). Suppose polynomials f, g ∈ C[x0, . . . , xn] define the same

hypersurface V (f) = V (g), with the same isolated singularity at p. Then, µp(f) =

µp(g).

We can see this using the interpretation of the Milnor number as the dimension of

the local algebra.

When f and g define the same hypersurface with the same isolated singularity, we

have a one-parameter family of functions F (x, t) = (1− t)f(x) + tg(x) interpolating

between f and g.

As t varies, the dimension of the local algebra is constant by the preservation of

the intersection multiplicity.

In this case, since f and g define the same hypersurface, they have the same

topological type, given by the identity map (Bε, Bε ∩ V (f)) → (Bε, Bε ∩ V (g)).

However, the condition V (f) = V (g) is not strictly necessary. Teissier’s theorem

[Tei73] established that the Milnor number is an invariant under under topological

types.

Theorem 4.2. If there is a homeomorphism (Bε, Bε ∩ V (f)) → (Bε, Bε ∩ V (g)), then

µp(f) = µp(g).

Proof. Since (Bε, Bε ∩ V (f)) ∼= (Bε, Bε ∩ V (g)), the complement of V (f) in Bε is

homeomorphic to the complement of V (g) in Bε. By Theorem 2.7 (Milnor’s fibration

theorem, second version), we know that these two sets are trivial smooth fiber bundles
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over a punctured disc. Thus, the fibers must be homotopy equivalent. This implies

that µp(f) = µp(g).

Hence, if we have a family F (x, t) of hypersurfaces all with the same topological

type at singularities, then their Milnor numbers will be the same.

Lê and Ramanujam gave the proof for the converse of this statement when the

dimension of the hypersurface is not 2:

Theorem 4.3 ([TR76]). Let F (t, x) be a polynomial in x = (x0, . . . , xn) with coeffi-

cients which are smooth complex valued functions of t ∈ I = [0, 1] such that for each

t ∈ I, F (t, 0) = 0 and ∂F
∂xi

(t, x) in x has an isolated zero at 0. Assume moreover that

the integer µt = dimC

(
C{x}

/(
∂f
∂x0

(t, x), . . . , ∂f
∂xn

(t, x)
))

is independent of t, where

C{x} is the ring of convergent power series. Then the monodromy fibrations of the

singularities of F (0, x) = 0 and F (1, x) = 0 at 0 are of the same fiber homotopy.

Further, if n ̸= 2, these fibrations are differentiably isomorphic and the topological

types of the singularities are the same.

The above result implies that if we have a smooth family of singular hypersurfaces,

with the same isolated singular point p and Milnor numbers at p, then these hyper-

surfaces have the same local topological type at p. This statement holds true for all

complex hypersurfaces with dimension n ≠ 2. For n = 1, the proof is relatively simple,

and for higher dimensions, the proof involves the h-cobordism theorem which requires

the assumption that n ≥ 3. As of now, the question is still open for dimension 2.
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The n = 2 case has been partially answered positively in a later paper by Parusiński

[Par99] with additional assumption that the family of hypersurfaces given is of the

form F (x, t) = f(x) + tg(x) where f, g : (Cn, 0) → (C, 0).

Proposition 4.4. Let f, g : (Cn, 0) → (C, 0) be such that F (x, t) = f(x) + tg(x) give

a family of hyperspaces with isolated singularities with constant Milnor numbers. Then

F is topologically trivial.

An answer [Oka79; Abd16] has also been given for another specific family of

hypersurfaces, extending the work by Kouchnirenko on Newton polyhedra.

It follows from 3.11 that if a holomorphic function f with an isolated singularity

at 0 is non-degenerate on the Newton boundary Γ(f), then the Milnor number at 0

equals the Newton number ν(f), which is completely determined by Γ(f).

Oka [Oka79] proved that, more than just the Milnor numbers, the Milnor fibration,

and thus the topological type of the singularity, is determined by the Newton boundary

as well.

Theorem 4.5. Suppose F (x, t) gives a non-degenerate family of hypersurfaces with

an isolated singularity at 0, and the Newton boundary of F (x, t) is independent of t.

Then the Milnor fibration of F (x, t) is independent of t.

In the case that the non-degenerate family of hypersurfaces have the same Newton

boundary, the local topology is invariant at the common isolated singularity point.

Abderrahmane [Abd16] generalized this result for a family of hypersurfaces that

are non-degenerate on the Newton boundary.
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Theorem 4.6. Let F : (Cn × C, 0) → (C, 0) be a one parameter deformation of a

holomorphic germ f : (Cn, 0) → (C, 0) with an isolated singularity such that the Milnor

number µ (Ft) is constant. Suppose that Ft is non-degenerate for every t. Then Ft is

topologically trivial.

Remark 4.7. In Abderrahmane’s result, this family of hypersurfaces is not required

to have the same Newton boundary. The assumption of constant Milnor number is

sufficient to guarantee that all the fibers have the same topological type at the isolated

singularity.

4.2 Connections to the multiplicity of polynomials

The local topology of the singularity p is closely related to the multiplicity of f , which

is expressed as the lowest degree in the power series expansion of f at p ∈ Cn. We

have shown above how the constancy of the Milnor numbers leads to the invariance of

the topological type. A similar question has been suggested by Zariski [Zar65] along

this line: what does the constancy of the Milnor numbers tell us about the multiplicity

of the functions defining these hypersurfaces at the fixed isolated singular point?

Recall that the constancy of Milnor numbers implies the invariance of the topolog-

ical type for hypersurfaces of dimension other than two [TR76]. For plane curve in

particular, the multiplicity of plane curves is a topological invariant and thus the con-

stant Milnor numbers implies constant multiplicity as well. The question has not been

fully answered in other dimensions. But with additional hypotheses on the functions,



29

we have obtained the following results: Gert-Martin Greuel [Gre86] generalized earlier

works on homogeneous hypersurfaces [GK75] and illustrated that if we only consider

weighted homogeneous polynomials, then the constancy of Milnor numbers implies

the constancy of multiplicities. Combined with Teissier’s result [Tei73], this implies

that the multiplicity is an invariant of the topological type for weighted homogeneous

polynomials.

Oka [Oka89] showed that a non-degenerate family F (x, t) = f(x) + tzA for some

fixed monomial zA = zA1
1 . . . zAn

n with invariant Milnor number is topologically trivial.

Generalizing Oka’s result, Abderrahmane [Abd16] proved the following theorem:

Theorem 4.8. Let F : (Cn × C, 0) → (C, 0) be a one parameter deformation of a

holomorphic germ f : (Cn, 0) → (C, 0) with an isolated singularity such that the Milnor

number µ (Ft) is constant. Suppose that Ft is non-degenerate for every t. Then, the

multiplicity of functions Ft is constant.
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5 Global Milnor numbers

In this section, we consider a specific family of hypersurfaces {f−1(t) : t ∈ C} and

discuss the the connections between this family of hypersurfaces and the Milnor

numbers.

Recall that the fiber Fθ of the Milnor fibration is diffeomorphic to f−1(t) ∩ Bε

for an epsilon ball centered at a singularity point p, for t ∈ C sufficiently close to

0. Hence, the topology of hypersurfaces f−1(t) for t close to 0 depends on the local

topology of the singularity point on the hypersurface f−1(0).

Now consider a family of hypersurfaces {f−1(t) : t ∈ C}. We see that singular

points showing up on this family of hypersurfaces exactly come from solutions to

the equation ∇f = 0. We refer to the set V (∇f) as the critical set of f . Then an

interesting question to ask is how the critical set V (∇f) determines the topology of

the family {f−1(t) : t ∈ C}.

We call t ∈ C a critical value of f if there exists a critical point in f−1(t). Note

that the critical set V (∇f) = V (∇f) is an algebraic set and hence a finite union of

irreducible algebraic varieties. Since ∇f is 0 on V (∇f) and any irreducible algebraic

variety is connected, the function value of f on each irreducible algebraic variety in

V (∇f) must be constant. Therefore, the set of critical values is finite. In other words,

only a finite subcollection of the family {f−1(t) : t ∈ C} are singular.

In particular, when f only has isolated critical points, V (∇f) is finite. We take the

sum of the Milnor numbers for isolated singular points in this family {f−1(t) : t ∈ C},
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denoted by µ̃(f). Algebraically,

µ̃(f) = dimC

(
C[x1, . . . , xn]

/(
∂f

∂x1
, . . . ,

∂f

∂xn

))
.

Note that if V (∇f) is a finite set of discrete points,

µ̃(f) = dimC

(
C[x1, . . . , xn]

/
(∇f)

)
=

∑
p∈V (∇f)

dimC

(
C[x1, . . . , xn]

/
(∇f)

)
mp

.

Recall from Section 3, Kouchnirenko [Kou76] gave a lower bound of the Milnor

number at an isolated singularity by the Newton number. Similarly, he gave an upper

bound of the µ̃(f), for convenient polynomials with only isolated singularities.

Definition 5.1. Let Γ̃−(f) := conv({0} ∪ supp(f)) Define Newton boundary of the

polynomial f at infinity as the union of all faces of Γ̃−(f) that do not contain 0,

denoted by Γ̃(f). The Newton number at infinity of f is defined as ν̃(f) := ν(Γ̃−(f)).

Definition 5.2. Similar to before, we say that f is non-degenerate on Γ̃(f) if for any

face γ of Γ̃(f), the equations x0
∂fγ
∂x0
, · · · , xn ∂fγ∂xn

have no common roots in (C∗)n.

Theorem 5.3 ([Kou76]). Let f be a convenient function.

• µ̃(f) ≤ ν̃(f),

• If f is non-degenerate on Γ̃(f), then µ̃(f) = ν̃(f).

Remark 5.4. Unlike the local version stated in Theorem 3.11, Oka’s approach cannot

be extended to arbitrary polynomials in the global case. This is due to the fact that

adding a monomial zA of sufficiently high degree to the polynomial may alter the

Newton boundary at infinity Γ̃(f).
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Γ̃(f)

Γ̃−(f)

0 (m, 0)

(0, n)

Figure 3: Newton Boundary of f = zm + wn at infinity

Remark 5.5. In the variety of polynomials with a given Newton Boundary at infinity,

the non-degenerate polynomials form an open dense subvariety [Bro88].

Example 5.6. For the example f = zm + wn, Γ̃−(f) = Γ−(f). The Newton number at

infinity ν̃(f) = ν(f) = (m − 1)(n − 1) gives an upper bound for the sum of Milnor

numbers µ(f). This indeed coincides with the observation that the set of critical

points determined by f only consists of one point (0, 0).

However, the finiteness of the set of critical values does not imply that f induces

a locally trivial smooth fibration over a neighborhood of a noncritical point. For

example, the function f = x − x2y has no critical points, but there does not exist

any neighborhood of 0 ∈ C such that f restricts to a locally trivial fibration. We call

a ∈ C an atypical value of f if there does not exist any neighborhood U ⊂ C of a

such that f induces a locally trivial smooth fibration f−1(U) → U . Denote the set of

atypical values of f by B(f), which is often called the bifurcation set in the literature.

Over the complement of B(f) in C, the map f : Cn → C \ B(f) is a locally trivial
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fibration [Tho69]. We call f−1(t) a generic fiber for t ∈ C \B(f). One may see that

B(f) contains the set of critical values as a finite subset. It has been shown that the

set of atypical values is actually finite as well [Ver76]. The atypical values that are

not critical values appear because there are “critical points at infinity” associated

to f−1(t) [Bro88]. Broughton [Bro88] introduced a class of polynomials known as

tame polynomials, which limits the polynomials to those with nice behavior at infinity.

Then, he showed that the topology of a fiber f−1(t) relates to the Milnor numbers.

Definition 5.7. Let f : Cn → C be a polynomial. We call f a tame polynomial

if there exists a compact neighborhood N of all the critical points of f such that

∥∇f(x)∥ is bounded away from 0 for all x ∈ Cn \N .

Tame polynomials may be characterized in terms of Milnor numbers:

Proposition 5.8. A polynomial f is tame if and only if µ̃(f) is finite and µ̃(f) = µ̃(fw)

for all sufficiently small w ∈ Cn, where

fw(x1, . . . xn) := f(x1, . . . , xn)− (w1x1 + . . .+ wnxn).

Remark 5.9. The concept of “tame polynomials” generalizes convenient polynomials

with nondegenerate Newton Boundary at infinity in Kouchnirenko’s theorems - these

polynomials are automatically tame. This follows directly from the proposition above.

If we perturb a convenient polynomial by a linear term, then the polynomial still have

the same Newton Boundary at infinity, unless the coefficients exactly cancel out. In

another words, if w is small enough, then Γ̃(f) = Γ̃(fw) and thus µ̃(f) = µ̃(fw).
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(2, 0)0

(0, 2)

(0, 4)

Γ̃(f)

Γ̃−(f)

Figure 4: Newton Boundary of f = x21 + 2x1x
2
2 + x42 + x22 at infinity

Example 5.10. Let f(x1, x2) = x21+2x1x
2
2+x

4
2+x

2
2 = (x1+x

2
2)

2+x22. If w = (a, b) ∈ C2

and a ̸= −1, then fw(x1, x2) = x21+2x1x
2
2+x

4
2+x

2
2−ax1−bx2 has one non-degenerate

critical point and µ̃(fw) = 1. So f is tame. However, ν̃(f) = 8−(4+2)+1 = 3 > µ̃(f),

so f must be degenerate on the Newton Boundary at infinity.

For a tame polynomial, Broughton[Bro88] established the relationship between

fibers f−1(t) and Milnor numbers:

Theorem 5.11. Let f : Cn → C be a tame polynomial. Let µ̃, µ̃t be the sum of Milnor

numbers of f and the sum of Milnor numbers on f−1(t) respectively for t ∈ C. Then

for any t ∈ C, the corresponding fiber f−1(t) has the homotopy type of a bouquet of

µ̃ − µ̃t spheres of dimension n − 1. In particular, for a generic fiber f−1(t) where

t ∈ C \B(f), it has the homotopy type of a bouquet of µ̃ spheres of dimension n− 1.

We may also see that the theorem above implies that if f : Cn → C is a convenient



35

polynomial non-degenerate on Γ̃(f), then a generic fiber f−1(t) has the homotopy

type of a bouquet of ν̃(f) spheres of dimension n− 1.

Bartolo et al. [ALM00] extended this result to non-convenient polynomials and

established a relationship between the Euler characteristic of a generic fiber f−1(t)

and the Newton number at infinity ν̃(f) of f . Specifically, they proved the following

theorem.

Theorem 5.12. Let f be a complex polynomial. Let t ∈ C \ B(f). If f is non-

degenerate on Γ̃(f), then

(−1)n−1(χ(f−1(t))− 1) = ν̃(f).
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6 A generalization to non-isolated singularities

In the previous sections, most of the results and characterizations are restricted to

when the singularity is isolated. We might ask what should replace the Milnor number

for a non-isolated hypersurface singularity.

Adam Parusiński [Par88] gave a generalization of the Milnor number to a compact

component of the set of singular points of a hypersurface of a complex manifold.

He started out with the following observation:

Proposition 6.1 ([Par88]). Let f ∈ C[x0, . . . , xn] with an isolated singular point of

V (f). Then the local Poincaré-Hopf index of the vector field ( ∂f
∂x0
, . . . , ∂f

∂xn
) at p over

Cn+1 equals the Milnor number of V (f) at p.

Since ∇f = ( ∂f
∂x0
, . . . , ∂f

∂xn
) : Cn+1 → Cn+1 defines a section of a trivial vector

bundle TCn+1 → Cn+1, the local Poincaré-Hopf index at a point agrees with the local

topological degree, which is the same as the Milnor number at a point.

Now consider a n-dimensional connected complex manifold M . Let X be a

hypersurface inM , i.e., the vanishing locus of a holomorphic section v of a holomorphic

line bundle L over M . If we fix a Hermitian metric on L, we can decompose the

associated connection D into D = D′ +D′′, where

D′ : A 0(L) → A 1,0(L) = A 0 (T ∗′M ⊗ L) ,

D′′ = ∂̄ : A 0(L) → A 0,1(L).

The bundle A 1,0(L) consists of (1, 0)-forms on M with values in L, which are given by
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sections of T ∗′M ⊗ L, where T ∗′M is the holomorphic cotangent bundle of M . The

bundle A 0,1(L) consists of (0, 1)-forms on M with values on L.

Any holomorphic section v is given by holomorphic functions in local holomorphic

trivializations. As a consequence, v must be annhilated by the operator D′′ = ∂̄. In

this way, we obtain an expression for the set of singular points of the hypersurface X:

Sing(X) := {x ∈ X : D′v = 0}

Now suppose Sing(X) is more than a discrete set of points. Since Sing(X) is

closed and open in the zero set of D′v [Par88], Sing(X) consists of smooth compact

connected components.

Let Y be a smooth compact m-dimensional component of Sing(X) and U be a

small neighborhood of X. Parunsiński defined a notion of Milnor numbers at Y , using

the intersection index:

Definition 6.2. The generalized Milnor number of X at Y , denoted by µ(X;Y ),

is defined as the intersection index indU D
′v, where v is the section defining the

hypersurface X.

Definition 6.3. Assume that X is compact. The generalized Milnor number of X,

denoted by µ(X), is defined as the intersection index of the zero section of T ∗′M⊗L and

D′v over a small neighborhood of X where v is the section defining the hypersurface

X.

Remark 6.4. When Y = {p} is a singleton, µ(X;Y ) is exactly the Milnor number of v

at p defined before. If X is compact and only consists of isolated singular points, then
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the generalized Milnor number of X, µ(X), is just the sum of the Milnor numbers at

singular points.

In this more general setting, µ(X) =
∑r

i=1 µ(X, Yi), where Y1, . . . , Yr are connected

components of Sing(X).

To each point x ∈ Y , one can attach a sequence of Teissier numbers

µn−m(X, x), . . . , µ1(X, x)

The Teissier number µi(X, x) is defined as the Milnor number of X ∩H at x where H

is a generic i-dimensional hyperplane of Cn that passes through p [Tei73]. Teissier

showed that the pair (X \ Sing(X), Y ) satisfies Whitney’s conditions if and only if

this sequence of Teissier numbers is constant on Y [Tei82]. We shall not explain all

the details involving Whitney stratification here, but the intuition is that a Whitney

stratification allows us to decompose a singular hypersurface into a disjoint union of

smooth manifolds in a compatible way. When the sequence of Teissier numbers is

constant on Y , Parusiński gave an explicit computation of the Milnor number using

Chern classes:

Proposition 6.5. If the pair (X \ Sing(X), Y ) satisfies Whitney’s conditions, then

µ(X, Y ) = µn−m(X, y) · ⟨cm(T ∗′Y ⊗ L|Y ), [Y ]⟩

where [Y ] is the fundamental homology class of Y and ci(E) denotes the i-th Chern

class of Y .
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Assuming M is compact, Parusiński [Par88] showed that the Milnor numbers are

related to Euler characteristics by the following formula:

Proposition 6.6. µ(X) = (−1)nχ(X) + ⟨cn(T ∗′M ⊗ L), [M ]⟩ − (−1)nχ(M) where

[M ] denotes the fundamental homology class of M .

Suppose we have another hypersurface of M that is linearly equivalent to X,

denoted X ′, this means that X ′ could be written as the vanishing locus of sections of

the same line bundle L. Then it follows from the proposition above that

µ(X ′) = (−1)nχ(X ′) + ⟨cn(T ∗′M ⊗ L), [M ]⟩ − (−1)nχ(M).

µ(X)− µ(X ′) = (−1)n(χ(X)− χ(X ′)).

Corollary 6.7. If X,X ′ are equivalent as divisors, then

µ(X)− µ(X ′) = (−1)n(χ(X)− χ(X ′)).

This corollary states that if we have a smooth hypersurface X ′ linearly equivalent to

X in a compact manifoldM , then the difference between the Euler characteristic of X ′

and that of X is exactly measured by the sum of Milnor numbers of X at all singular

points. To put it in another words, if we approximate the singular hypersurface X by

a linear family of smooth hypersurfaces given by sections of the line bundle L, then

µ(X) equals the change in the Euler characteristic as this family degenerates into X.
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6.1 Hypersurfaces of CPn

In this subsection, we take consider the n-dimensional compact manifold CPn and

apply some of the Pausiński’s results to consider hypersurfaces in this case. A complex

projective hypersurface is given by the vanishing locus of a homogeneous polyno-

mial. Since the diffeomorphism type of a smooth complex projective hypersurface

is determined uniquely by its degree and dimension, let’s assume V (F ) is given by

F = xd0 + . . .+ xdn. Then consider

Fa : Cn+1 → Cn+1;

(x0, . . . , xn) 7→ xd0 + . . .+ xdn.

The affine cone on V (F ) in Cn+1 is a complex hypersurface

V (Fa) = {(x0, . . . , xn) ∈ Cn+1 | xd0 + . . .+ xdn = 0}

in Cn+1 with an isolated singularity at 0, since V (Fa,∇Fa) = {0}.

For a hypersurface V (g) in Cn+1 given by a homogeneous polynomial g : Cn+1 →

Cn+1, there exists a global Milnor fibration g−1(1) ↪→ Cn+1 \ V (g) → C∗, such that

the fiber g−1(1) of this map is homotopy equivalent to the fiber of the Milnor fibration

of f at 0 [Mil68].

Thus we have a global Milnor fibration:

F−1
a (1) ↪→ Cn+1 \ V (Fa) → C∗.

By Theorem 2.9, F−1
a (1) is homotopy equivalent to a finite bouquet of n-dimensional
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spheres, where the number of spheres is given by the Milnor number of Fa at 0:

µp(Fa) = dimC

(
C [x0, . . . , xn]

/(
∂Fa
∂x0

, . . . ,
∂Fa
∂xn

))
m0

= (d− 1)n+1.

This gives the Euler characteristic of the fiber:

χ(F−1
a (1)) = 1 + (−1)nµ0(Fa)) = 1 + (−1)n(d− 1)n+1.

Moreover, the map that goes from F−1
a (1) to CPn \X is a d-fold cover. So the Euler

characteristic of F−1
a (1) relates to the Euler characteristic of V (F ) by

χ(F−1
a (1)) = d · χ(CPn \ V (F )) = d · (χ(CPn)− χ(V (F )).

Thus, combining the two formulas above, we obtain the Euler characteristic of V (f)

in CPn:

χ(F−1
a (1)) = (n+ 1)− 1

d

(
1 + (−1)n(d− 1)n+1

)
.

Now consider a singular hypersurface X in CPn that is linearly equivalent to a

degree-d smooth complex projective hypersurface in CPn. By Corollary 6.7, the Euler

characteristic of X is given by

χ(X) = (n+ 1)− 1

d

(
1 + (−1)n(d− 1)n+1

)
+ (−1)nµ(X).

where µ(X) is the generalized Milnor number of X defined by Parusiński [Par88].

6.2 Milnor numbers at infinity

Going back to the case where f ∈ C[x1, . . . , xn] defines a complex hypersurface in

the affine space Cn with isolated singularities, we see that the homogenization of this
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polynomial in CPn defines a hypersurface in CPn. Suppose f = f0 + f1 + . . .+ fd is a

decomposition of this polynomial by degree. Then its homogenization F is given by

F = xd0f0 + xd−1
0 f1 + . . .+ fd.

Note that V (f) ↪→ V (F ) along the natural inclusion Cn ↪→ CPn. In particular,

isolated singularities of V (f) will stay isolated in V (F ). Let D be the divisor of CPn−1

defined by the zero locus of the homogeneous polynomial fd. This is the same as the

restriction of the zero locus of F to the hyperplane at infinity CPn−1 = V (x0).

The fact that the function f has only isolated singularity points in Cn allows us to

separate the affine singular points from the singularities at infinity via the following

equation [ALM00]:

µ(CPn;V (F )) = µ(CPn;V (F ), D) + µ(CPn;V (F ), Sing(f)).

As a final remark, it is worth noting that while the polynomial f we started with

had isolated singularities, the singularities that appear on the hyperplane at infinity

do not have to be isolated.
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Funkcional. Anal. i Priložen 1.3 (1967), pp. 54–65. issn: 0374-1990.
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[TR76] Lê Dūng Tráng and C. P. Ramanujam. “The invariance of Milnor’s number

implies the invariance of the topological type”. In: American Journal of

Mathematics 98 (1976), pp. 67–78.

[Ver76] Jean-Louis Verdier. “Stratifications de Whitney et théorème de Bertini-
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